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Accurate Computation of the Performance of M -ary Orthogonal
Signaling on a Discrete Memoryless Channel

Jon Hamkins, Senior Member, IEEE

Abstract—A formula for the error rate of maximume-likelihood
detection of M -ary orthogonal signaling on a discrete memoryless
channel is manipulated into a form that aveids numerical impreci-
sion when it is used to calculate low error rates.

Index Terms—Optical modulation, optical signal detection,
pulse-position modulation (PPM), signal detection.

I. A FORMULA FOR COMPUTING LOW SYMBOL-ERROR RATES

HIS letter considers the error probability when M mutually

orthogonal signals are transmitted with equal likelihood
and equal power, and received by a bank of M correlators at
the receiver. The analysis requires that the channel be mem-
oryless and have the property that the maximum-likelihood
symbol decision is the result of identifying the highest corre-
lator output. We are motivated by the desire to calculate the
performance of M-ary pulse-position modulation (PPM) on a
Poisson channel, which is a good model for some free-space
optical communications links [3]. We present an easily com-
puted formula that works at low bit-error rates (BERs) that
some applications require.

When the channel has continuous-valued outputs, the
probability of incorrectly deciding which of the M sig-
nals was sent is well known (see, e.g., [1] and [2] for the
additive white Gaussian noise (AWGN) channel) to be
Po = 1= [Z pi(@)[fZ po(y)dy]™* dx, where pi(-)
and po(-) are the conditional probability density functions for a
correlator output for the transmitted signal or one of the M — 1
other signals, respectively.

The remainder of the letter considers a discrete-output
channel. The probability of symbol error for M -ary orthogonal
signaling on the Poisson channel is derived in [3] and [4], and
the straightforward generalization of that result to a discrete
memoryless channel whose outputs take values from the non-
negative integers is

1 . = I
P.=1- Mpo(O)M 'pr(0) = pa(k) Po(k — )M
k=1

o |\ Ee-n) Y ®
M Po(k—1)
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where p;(-) and po(-) are now probability mass functions, and
where Py(k) = anzo po(m) is a cumulative distribution func-
tion. (We use the notational convention that if po(k) = 0, there
is no contribution to the sum.) This may be written more simply

as
P.=1- fj pf(lgj)w (Po(k)™ = Po(k = )™). (2)
k=0

Unfortunately, a direct numerical evaluation of either (1) or
(2) is difficult when P, is small, because it involves differences
that can be many orders of magnitude smaller than either term.
This is problematic when numbers are stored with finite preci-
sion, such as with the IEEE 754 floating point standard [5]—a
typical program would incorrectly evaluate 1 — (1 — 1073%) as
zero, for example.

Thus, it is helpful to derive a formula for the symbol-error rate
(SER) P, that does not involve the type of difference present
in (1) and (2). This would provide an alternative to the union
bound or other upper bound [6] which is typically used when
P, is small. Using Y, , p1(k) = 1, we may rewrite (2) as

Po(E)M 4 Po(k — 1)M). (3)
k:Op

p1(k)

When Py(k) nearly equals Po(k — 1), or equivalently,
po(k)/Po(k — 1) is very small, the kth term is diffi-
cult to calculate in a numerically precise way. We let

fr = 1 —Py(k—1) = >°_, po(m) and rewrite the
kth term as
p1(k)
ar = k)M
k po(k)M[po( )

— (Po(k — 1) + po (k)™ + Po(k — 1)M]

= po(k)M
po(k) \“
<1+P0((;€—1)> _1]}

{po(k)M — Po(k—1)M
po(k)M

po(k) )
nk-1) T <<P0(k—1)> ) _1]} @

= pi(k)(1 = Po(k = 1)) + O(po(k))
=pi(k) (1 = (1= fi)™1) + O(po(k))
=p1(k)(M — 1) fx + O (po(k) + f7)
where in (4) and (5) we used the Taylor series (1 — )
Mxz+0O(2?). (5) becomes accurate as k — oo, since po(k) — 0

and f — 0. This leads to the main result of the letter, which
Wwe now state.
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The probability of symbol error is given by

P. = kf::opl(k) <1 -

Po(k)M — Py(k — 1)M

)

po(k)M
S WM - Dt 0 o)+ ) ©
k=N+1

and N may be freely chosen to minimize the total computational
error due to numerical imprecision in the first summation, and
due to the Taylor-series remainder error in the second summa-
tion. Note that when N = 0, the second summation is simply a
union bound.

II. APPLICATION TO THE POISSON CHANNEL

In the case of PPM on a Poisson channel

nke_nb
po(k) = =7— ™
<+ k,—(ns+np)
iy = etk ®

where n;, represents the average number of background counts
detected in a slot, and ns represents the average number of
signal counts detected in a signal slot. Fig. 1 shows the SER as
a function of ns, when n, = 1 and M = 64. Using (1) or (2),
the error-rate computation became inaccurate whenever the true
error rate was below 0.01. This is because the square-bracket
term in (1) evaluated to zero (e.g., (1+10717)6* — 1 is eval-
uated as zero) for significant terms of the sum. Using (3), the
computation becomes inaccurate for error rates below approx-
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Fig. 1. SER of 64-PPM on a Poisson channel, with n;, = 1, as computed using

(1), (2), 3), and (6).

imately 10~'°. Using (6), the error rate could be accurately
computed for for error rates down to 107323, which is the
limit of representable floating point numbers in the IEEE 754
double precision format.
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